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Context

A WP3.3 has a number of roles for advanced air
source heat pumps:
I Demand side management/response
A Integration with storage
I Upgrading Heat Pump
A New working fluids

I Meeting householder thermal needs

A Operation as a DSM mechanism for rdispatchable,
variable renewable energy

A Understanding wider domestic heat demand patterns
I Integration into energy markets
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System modes

A Controllable heating modes via32PV:

1. Direct heating of house via electrical heat pump (DIRECT)
2. Heat pump stores heat in 600 litre tank (STORING)

3. Heating of house from storage tank (INDIRECT)

1. DIRECT 2. STORING 3. INDIRECT
‘[ *é ) @
Central energy
Heating  storage tank
/ Pump /
-
Central 600 litre ¥
Heating energy T . y
Pump storage tank {7 - /;
2 Stage Air d 3 ] /
: to Water = % /
2 Ste:ge Alr Heat Pump < A ) / 3-PV ;
to Water ‘ > #
Heat Pump g ¢




Raspberry PRP)

A Demand Sid&lanagement A RPO2ZYUNBEf & WaeausSy
Controller configuration andpre-programmed
decision making algorithm.

A Theprogramme aims to minimise
effect of HP on electric network at
peak electric demand times and make

A It decides the best time to use of low price electricity at low
store heat and best time demand times by load shifting.
to use store to achieve
this. p—

A Heat is provided directly
from HP in between.




RPIProgramme
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Data & Analysis

Table 1¢ Summary of energy use IRPIDSM mode between tJune 201% 30" Nov. 2015

System Mode | HP Elec. (kWh) | HP Heat (kWh)
(KWh)

Direct 3425 7817 2.28 7181
Storing 772 1480 192 -
Indirect 000 e emeee e 492
Sum 4179 9297 - 7673
A Percentage demand shift: 492/7673 = 6.4%, @ 100% storage efficiency this would

be 1480/7673 = 19.3%.

Thermal storage efficiency across period is 31%, however average daily efficiency
typically 38%.

Increasing time between thermal storage and use reduces the effective demand
shift and thermal efficiency of the tank.

Actual stored heat to house is less than the initial electrical input into the HP
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Data & Analysis

COP HP vs Ambient Temperature for
Direct Heating Mode & Storage Mode

AMBIENT TEMPERATURE (°C)

Ve

A COP of HP is reduced when storing heat because ability of HP to transfer heat to
tank when approaching storage temp of&5(max flow temp of HP = &D)

A Storing to a lower temperature may improgeout reduces energy stored and

effectiveness of radiators.
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Data & Analysis

A Typical week of DSM control Mof9Sun 1%
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Actual System electricity
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Reliability & Benefit of Controller

Controller running from June 2015, with only minor programming corrections
required. Actual hardware has proved reliable to date.

This is a low cost programming solution which allows a number of opportunities to
be explored in terms of DSM. At 100% thermal storage efficiency it is possible to
shift 19.3% of heat demand to might time price tariffs.

As the controller requests dataa single website can be used to issue the demand
response required. This can be a single or combination of responses. Ease of
implementation in terms of system operator point of view.
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Issues tdDvercome

A Future Work

A Performance and effectiveness of current DSM setup is
predominately limited by the thermal storage efficiency of the tank.

A RPicontroller works reliably but tweaking of some programming
parameters may be required and further feasibility analysis of the
system will be completed.

A Matlabmodelling to test scenarios across different housing stock,
heat demand patterns, thermal storage efficiencies, HP COP
performances, DSM scenarios.
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PLEXOS® Integrated Energy Mod
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PLEXOS® Integrated Energy Mod
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PLEXOS® Integrated Energy Mod
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Correlation between daily maximum
temperature and heating demang76%

HP performance varies by season and time
of the day

Thermal energy storage efficiency varies
by season and time of the day

Dynamic HP COP and ES efficiency
implemented into the future model




PLEXOS® Integrated Energy Mod

Extrapolating to 20% of 2.5M Homes?
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Control of Systems

New modules in TRNSYS (Weather-8sérs, Building response, HP response
Energy Storage Performance, Renewable energy integration, Market models)
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